Arcangeli's Method for Fredholm Equations of the First Kind
نویسندگان
چکیده
It is well known that a linear operator equation of the first kind, with an operator having nonclosed range, is ill-posed, that is, the solution depends discontinuously on the data. Tikhonov's method for approximating the solution depends on the choice of a positive parameter which effects a trade-off between fidelity and regularity in the approximate solution. If the parameter is chosen according to Morozov's discrepancy principle, then the approximations converge to the true solution as the error level in the data goes to zero. If the operator is selfadjoint and positive and semidefinite, then "simplified" approximations can be formed. We show that Morozov's criterion for the simplified approximations does not result in a convergent method, however, Arcangeli's criterion does lead to convergence. We then prove the uniform convergence of Arcangeli's method for Fredholm integral equations of the first kind with continuous kernel.
منابع مشابه
Homotopy approximation technique for solving nonlinear Volterra-Fredholm integral equations of the first kind
In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...
متن کاملVARIATIONAL ITERATION METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND
In this paper, He‘s variational iteration method is applied to Fredholm integral equations of the second kind. To illustrate the ability and simplicity of the method, some examples are provided. The results reveal that the proposed method is very effective and simple and for first fourth examples leads to the exact solution.
متن کاملB-spline Method for Solving Fredholm Integral Equations of the First Kind
In this paper, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis. The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...
متن کاملTheory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملA new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind
In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010